385 research outputs found

    Management of Invasive Species using Optimal Control Theory

    Get PDF
    In my dissertation I will discuss the use of optimal control theory to determine management strategies for an invasive species. I focus on a Diaprepes Root Weevil, which is an invasive species having a substantial negative impact on citrus tree growth in regions such as Florida and California. At the larva stage of the life cycle Diaprepes Root Weevils cause destruction of citrus trees at the root level resulting in loss of citrus crops. This detrimental effect for farmers motivates research into how to minimize the economic loss due to the Diaprepes Root Weevil. For my work, I use optimal control theory to determine levels of pesticide or biological control to apply to the Diaprepes Root Weevil to reduce the economic loss. Advisers: Richard Rebarber and Brigitte Tenhumber

    STABILIZATION BY ADAPTIVE FEEDBACK CONTROL FOR POSITIVE DIFFERENCE EQUATIONS WITH APPLICATIONS IN PEST MANAGEMENT

    Get PDF
    An adaptive feedback control scheme is proposed for stabilizing a class of forced nonlinear positive difference equations. The adaptive scheme is based on so-called high-gain adaptive controllers and contains substantial robustness with respect to model uncertainty as well as with respect to persistent forcing signals, including measurement errors. Our results take advantage of the underlying positive systems structure and ideas from input-to-state stability from nonlinear control theory. Our motivating application is to pest or weed control, and in this context the present work substantially strengthens previous work by the authors. The theory is illustrated with examples

    The barrier for heme-protein separation estimated by non-equilibrium molecular dynamics simulations

    Get PDF
    In heme-containing proteins the heme group is usually non-covalently bound in a pocket. Molecular dynamics (MD) simulations have been performed to estimate the barrier height for heme-protein separation. In simulations of myoglobin dissolved in water, a force has been applied to pull the heme out of the binding pocket. With forces above 0.5 nN, the heme group is easily pulled out of the pocket in times of the order of tens of picoseconds. With weaker forces, heme release becomes too slow to be monitored in an MD simulation covering a couple of hundred picoseconds. These results are consistent with a free energy barrier to heme release of about 100 kJ/mol. The results show that the main energetic change that occurs during the release is a conversion of heme/protein Lennard-Jones energy into heme/water Lennard-Jones energy. The release is essentially barrierless in energy indicating that the main part of the barrier is entropic

    Distinct Host–Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis

    Get PDF
    Mycobacterium marinum is a promiscuous pathogen infecting many vertebrates, including humans, whose persistent infections are problematic for aquaculture and public health. Among unsettled aspects of host–pathogen interactions, the respective roles of conventional and innate-like T (iT) cells in host defenses against M. marinum remain unclear. In this study, we developed an infection model system in the amphibian Xenopus laevis to study host responses to M. marinum at two distinct life stages, tadpole and adult. Adult frogs possess efficient conventional T cell–mediated immunity, whereas tadpoles predominantly rely on iT cells. We hypothesized that tadpoles are more susceptible and elicit weaker immune responses to M. marinum than adults. However, our results show that, although anti–M. marinum immune responses between tadpoles and adults are different, tadpoles are as resistant to M. marinum inoculation as adult frogs. M. marinum inoculation triggered a robust proinflammatory CD8+ T cell response in adults, whereas tadpoles elicited only a noninflammatory CD8 negative- and iT cell–mediated response. Furthermore, adult anti–M. marinum responses induced active granuloma formation with abundant T cell infiltration and were associated with significantly reduced M. marinum loads. This is reminiscent of local CD8+ T cell response in lung granulomas of human tuberculosis patients. In contrast, tadpoles rarely exhibited granulomas and tolerated persistent M. marinum accumulation. Gene expression profiling confirmed poor tadpole CD8+ T cell response, contrasting with the marked increase in transcript levels of the anti–M. marinum invariant TCR rearrangement (iVα45-Jα1.14) and of CD4. These data provide novel insights into the critical roles of iT cells in vertebrate antimycobacterial immune response and tolerance to pathogens
    • …
    corecore